b) In the coupled coil circuit of fig.6, prove that $\frac{\left|I_{1}\right|}{\left|I_{2}\right|}=\frac{L_{2}}{M}\left[1+\frac{R_{2}{ }^{2}}{W^{2} L_{2}^{2}}\right]^{1 / 2}$.

OR
5. a) Two coupled coils have $\mathrm{K}=0.8, \mathrm{~N}_{1}=500$ turns, $\mathrm{N}_{2}=1000$ turns and the mutual flu being 0.9 wb , find the primary coil flun. If the primary current be 10 A , find the primary coil inductance. Also obtain the secondary inductance.(8)
b) Find V_{2} in the circuit of fig. 7 such that the current in the left hand loop (loop - 1) is zero. Assume $V_{1}=5 \angle 0^{\circ} \mathrm{V}$

$59-7$

