Total No of Pages: 4

3E1641

B. Tech III Sem. (Main) Exam. Jan. 2016 Electronic Instrumentation \& Control 3EI1 Electronic Devices \& Circuits Common to EE, EC \& EIC

Time: 3 Hours

Maximum Marks: 80
Min. Passing Marks: 24
Instructions to Candidates:
Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly.

Units of quantities used/calculated must be stated clearly.
Use of following supporting material is permitted during examination.

1. Scientific Calculator.

2. NIL

UNIT-I

Q. 1 Explain Itall liffect and its aplications. What properties of a semiconductor are determined from a ltall lified experiment?

OR

Q. 1 Give the Energy Band description of semiondudors? 'i the effective mass of air electron is equal to thrice the effective mass of a holes. lime the distance in ev of the fermi level in an intrinsic semi conductor from the centre of the forbiden band at room temperature.

UNIT-II

Q. 2 (it) Consider a circuit consisting of a diode ' D ' a resistance ' R ', and a signal source 'Vi', in series. Define -
(i) Static characteristics
(ii) Dynamic characteristics
(iii) Transfer chrematistics
(iv) What is the correlation between (ii) and (iii)
(b) A silicon diode operates at 0.4 V . Calculate the factor by which the current will be multiplied when the temperature is increased from $25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.

OR

Q. 2 (a) What are the general characteristics of diode clipper circuits?
(b) A full wave rectifier circuit is required to give a DC output voltage of 80 V . Neglect resistance of diode. Find:
(i) DC load current, if R_{L} is 5000 ohm
(ii) Efficiency of rectifier
(iii) Peck current through diode.

UNMTMT

Q. 3 (a) Define the pinch - off voltage V_{p}. Sketch the depletion region before and after pinch - off.
(b) A pnp transistor with $\beta=60$ is connected in a common - base configuration and is biased in the forward - active mode. The collector current is $I_{\mathcal{C}}=0.85 \mathrm{~mA}$. Determine $-\alpha, 1_{E} \& I_{B}$.

UNIT-V

Q. 5 (a) Explain a CMOS inverter.
(b) Draw the circuit diagram of Darlington Amplifier. Give its Characteristics, merits and applications.

OR

Q. 5 (i) Discuss the frequency response curve of R-C coupled amplifier by deriving suitable derivation for low and high frequency.
(ii) Calculate the DC bias voltages and currents in the circuit shown below -

OR

Q. 3 (a) Draw the transfer characteristics of transistor and indicate the Cut-off, Cut-in, Active and Saturation region.
(b) Explain the Ebers- Moll module of transistor and with the help of it find the collector reverse saturation current.

UNIT-IV

Q. 4 (a) State and explain Miller's theorem with the aid of a circuit diagram.
(b) Two MOSFETs having drain resistances of $r_{d_{1}}$ and $r_{d_{2}}$ and amplification factors of $\mu_{1}+\mu_{2}$ respectively are connected in parallel. Show that -
(i) $\frac{1}{r_{d_{1}}}+\frac{1}{r_{d_{2}}}=\frac{1}{r_{d}}$
(ii) $\mu=\frac{\left(\mu_{1} r_{d_{2}}+\mu_{2} r_{d_{1}}\right)}{\left(r_{d_{1}}+r_{d_{2}}\right)}$

Where, r_{d} and μ are equivalent resistances and amplification factors respectively.

OR

Q. 4 (a) Distinguish between JFET and BJT.
(b) Explain the construction and working of MOSFET.
\qquad

Time: 3 Hours

3E1642

B. Tech III Sem. (Main/Back) Exam. Jan. 2016 Electrical Engineering 3EE2A Circuit Analysis - I

Maximum Marks: 80
Min. Passing Marks: 26

Instructions to Candidates:

Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly.

Units of quantities used/calculuted must be stated clearly.
Use of following supporting material is permitted during examination. (Mentioned in form No. 205)

1. NIL

2. NIL

UNIT-I

Q. 1 (a) Obtain the current I_{1}, using KVL.

(1). Show the cut-sets for the graph of the network shown in figure and develop the fundamental cut-set matrix.

OR

Q. 1 (a) Develop nodal equations in node (1), (2) \& (3) in the circuit of figure -

(b) Draw the dual of the network shown in figure.

UNIT-II

Q. 2 (a) Explain Thevenin Theorem. Also give the steps for solving a network ulilizing Thevenin's Theorem.
(b) Using Superposition Theorem, find the current through a link that is to be connected between terminals a-b. Assume the link resistance lobe tro. |8|

OR

Q.2 (a) Explain reciprocity theorem and also give the steps for solving a network utilizing reciprocity theorem.
(b) Find the value of R in the circuit of figure, such that maximum power transfer takes place. What is the amount of this power?

Q. 3 (a) Give the relationship between line and phase voltages and currents in a starconnection.
(b) A delta-connected load has a parallel combination of resistance (5Ω) and capacitance reactance (-j5ת) in each phase. If a balanced 3-phase 400 V supply is applied between lines, find the phase currents and line currents and draw the phasor-diagram.

OR

Q. 3 (a) Give short note on -
(i) Power Factor
(ii) Reactive Power
(iii) Apparent Power
(iv) Power Triangle
(b) A voltage of $100 \angle 0^{\circ}$ volts is applied across p-q terminals of the circuit shown in figure to produce current of $40 \angle 10^{\circ} \mathrm{A}$. Find the value of Z , when $\mathrm{r}=5 \Omega$. What would be the active power consumed in Z ?

UNIT-IV
Q. 4 Determine the Fourier series of the waves shown in figure.
$[8 \times 2=16]$
(a)

Q. 4 (a) Obtain the Fourier Coefficients of the wavelom finnw in figure.

(b) Obtain the Exponential Fourier series of the waveform shown in figure.

UNIT-V

Q. 5 (a) Explain step response of $\mathrm{R}-\mathrm{L}$ series circuit.
(b) In figure, the battery voltage is applied for a slady slate period. Obtain the complete expression for the current after closing the swilch K . Assume $\mathrm{R}_{1}=1 \Omega$, $\mathrm{R}_{2}=2 \Omega, \mathrm{~L}=1 \mathrm{H}, \mathrm{E}=10 \mathrm{~V}$.

OR

Q. 5 Find the inverse of the laplace transform.

$$
F(s)=\frac{s^{3}+6 s^{2}+11 s+7}{s^{2}+5 s+6}
$$

\qquad

3E1645

B. Tech III Sem. (Main/Back) Exam. Jan. 2016 Electrical \& Electronics Engineering 3EX5A Electrical Machines - I

EE, EX

Time: 3 Hours

Maximum Marks: 80
Min. Passing Marks: 24

Instructions to Candidates:

Attempt any five questions, selecting one question from each unit. $1 / /$, $\mid u \times s t i o u s$ carry equal marks. Schematic diagrams must be shown wherever netessurv. , lms clata you feel missing suitably be assumed and stated clearly.
Units of quantities used/calculated must he stated clearly.
Use of following supporting material is permitted during ‘'uminulion. (Mentioned in form No. 205)

1. NIL
2. NIL

UNIT-I

Q. 1 (a) Explain principle of conversion of energy in electro-mechamical syslom :and ain its general representation.
(b) A circuit coil of 500 turns with a mean diameter of 50 cms is rotaled athoul it vertical axis in the earth's field at 40 revolutions per secomel. line me instantaneous value of emf induced in the coil when its plane P ' is
(i) Parallel
(ii) Inclined at 30° degree to the magnetic meridian.

Take value of H as $14.3 \mathrm{AT} / \mathrm{m}$.

OR

Q.1 (a) Derive the expression of torque developed in closely excited magnetic system. Clearly explain the assumptions made.
(b) Two coils with self inductance 1 H and 4 H have a mutual inductance of 1 H . The RMS value of current following in the two coils is 4 A and 1 A respectively. Find-
(i) The coupling factor
(ii) The energy stored in magnetic system

UNIT-II

Q. 2 Write short note on commutation in DC machine. Discuss the method of improving commutation?

OR

Q. 2 What are the different types of dc generators according to the ways in which fields are excited? Show the connection diagram of each type.

UNIT-III

Q. 3 Explain the Hopkinson's Method of testing of the dc machines. Differentiate this model with the Swinburne's method of testing of the dc machines. Can the Swinburne's method of testing of the dc machines be applied on dc series machines?

OR

Q. 3 (a) Establish an expression for the speed of dc motor with the help of neat connection diagram. Explain the method of controlling the speed of dc motor below and above the rated speed. Justify the statement that dc series motors are never started at no load.
(b) A 250 V de shunt motor runs at 1000 rpm at no load \& takes 5 Amp . The total armature and shunt yield resistance are $0.2 \Omega \& 250 \Omega$ respectively. Calculate the speed under loaded condition taking 50Amp. The armature reaction weakens the yield by 3%.

UNIT-IV

Q. 4 In what way a practical transformer differ from an ideal transformer? Develop an equivalent circuit for the practical transformer.

OR

Q. 4 (a) Explain the process of finding efficiency of transformer by Sumpher's lest. |12]
(b) What is Welding Transformer?

UNIT-V

Q. 5 (a) Explain the Scott connection with proper circuit diagram.
(b) Write short note on open - delta connection.

OR

Q. 5 (a) Explain in detail the double star connection for obtaining 6-phase suply from 3 . phase supply.
(b) Write short note on inrush of magnetizing current in poly phase lamsformer. $|8|$

Roll No. \qquad
Total No of Pages:
4

3E1646

B. Tech III Sem. (Main/Back) Exam. Jan. 2016 Electrical \& Electronics Engineering 3EX6A Advanced Engineering Mathematics - I Common to EE, EX

Time: 3 Hours
Maximum Marks: 80
Min. Passing Marks: 24
Instructions to Candidates:
Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly.
Units of quantities used/calculated must be stated clearly.
Use of following supporting material is permitted during examination. (Mentioned in form No. 205)

1. NIL
2. NIL

UNIT-I

Q. 1 (a) Find. Laplace transform of $\mathrm{t}^{2} \mathrm{H}(\mathrm{t}-3)$.
(b) Find inverse Laplace transform of- $\tan ^{-1} \frac{2}{\mathrm{~s}^{2}}$.
(c) Solve the following differential equation using Laplace transform technique:

$$
\left(D^{4}-1\right) y^{\prime}=1, \quad y(0)=y^{\prime}(0)-y^{\prime \prime}(0)-y^{\prime \prime \prime}(0)=0
$$

$$
\underline{\mathrm{OR}}
$$

Q. 1 (a) Find Laplace transform of $\frac{\mathrm{e}^{-t} \sin t}{\mathrm{t}}$.
(b) Find inverse Laplace transform of $\frac{\mathrm{se}^{-2 \mathrm{~s}}}{\mathrm{~s}^{2}-1}$.
(i) Solve the following partial differential equation using Laplace transform lichnique:

$$
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}
$$

subject to the constraints

$$
\mathrm{u}(0, \mathrm{t})=\mathrm{u}(5, \mathrm{t})=0 ; \mathrm{u}(\mathrm{x}, 0) 10 \operatorname{sm} 4 \pi \mathrm{x}
$$

UNIT-II

Q. 2 (a) Express the function -

$$
f(x)= \begin{cases}\frac{2}{\pi} \sin x & ; 0 \leq x \leq \pi \\ 0 ; & x>\pi\end{cases}
$$

in integral form with the help of Fourier sine transform and hence evaluate

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin (\pi \lambda) \sin (\mathrm{x} \lambda)}{\left(1-\lambda^{2}\right)} \mathrm{d} \lambda \tag{6+2=8}
\end{equation*}
$$

(b) Find discrete Fourier transform of the sequence $\left\{\mathrm{d}_{\mathrm{q}}\right\}=\{1,2,3,4\}$.

OR

Q. 2 (a) Prove that - $\int_{0}^{\infty} \frac{\cos x \lambda}{\left(1-\lambda^{2}\right)} d \lambda=\frac{\pi e^{-x}}{2}, x \geq 0$
(b) Solve the following partial differential equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} ; x>0, t>0
$$

subject to the constraints
$\mathrm{u}=0$, when $\mathrm{x}=0, \mathrm{t}>0$
$\mathrm{u}=\left\{\begin{array}{lc}1 & ; \\ 0 & 0<\mathrm{x}<1 \\ 0 & \mathrm{x} \geq 1\end{array}\right.$, when $\mathrm{t}=0$

UNIT-III

Q. 3 (a) Find Fourier series to represent the function -

$$
f(x)=\left\{\begin{array}{cc}
0 & ; \\
\frac{\pi x}{4} & -\pi<x<0 \\
& 0<x<\pi
\end{array}\right.
$$

Hence deduce that $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$ \qquad
(b) Find the curve through two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ which when rotated about the x - axis, gives minimum surface area.

OR

Q. 3 (a) Find half range cosine series for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}(\pi-\mathrm{x}) ; \mathrm{x} \in(0, \pi)$
(b) Find the shape of the plane curve of fixed length 1 so that it encloses maximum area.

UNIT-IV

Q. 4 (a) Show that the function $\mathrm{f}(\mathrm{z})=\sqrt{|\mathrm{xy}|}$ is not regular at origin, although Cauchy Riemann equations are satisfied.
(b) Find the image of the infinite step $\frac{1}{4} \leq y \leq \frac{1}{2}$ under the transformation $w=\frac{1}{z}$. Also show the regions graphically. $|6+2=8|$
Q. 4 (a) Find the bilinear transformation that maps the points $0,-\mathrm{i},-1$ in \%- plane onto the points $w=i, 1,0$. What are the invariant points of this transformation? $\quad|6+2=8|$
(b) Using Cauchy's integral formula, evaluate -

$$
\begin{equation*}
\int \frac{z d z}{(z-2)(z-3)^{2}} \text { where } C \text { is the circle }|z-3|=1 / 2 \tag{8}
\end{equation*}
$$

UNIT-V

(9) (il) Find Laurent's series for the function $f(z)=\frac{1}{z(1-z)}$ in the region -
(i) $|z+1|<1$
(ii) $|<|z+1|<2$
(iii) $|z+1|>2$
(b) Find the residue of $\mathrm{f}(\mathrm{z})$ at each of its singularity, where $\mathrm{f}(\mathrm{z})$ is -
(i) $\frac{1+e^{z}}{\sin z+z \cos z}$
(ii) $\frac{\mathrm{e}^{\mathrm{z}}}{\mathrm{z}(\mathrm{z}+1)^{2}}$

OR

Q. 5 (a) Using Cauchy's residue theorem, evaluate the integral $\int_{c} \frac{z-3}{z^{2}+2 z+5} d z$, where C is the curve $|\mathrm{z}+1-\mathrm{i}|=2$.
(b) Show that -

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x=\frac{5 \pi}{12} \tag{8}
\end{equation*}
$$

\qquad

3E1485

B. Tech III Sem. (Back) Exam. Jan. 2016

Elect. Engineering 3EE5(O) Electrical Measurements

Time: 3 Hours

Maximum Marks: $\mathbf{8 0}$
Min. Passing Marks: 24

Instructions to Candidates:
Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly.
Units of quantities used/calculated must be stated clearly.
Use of following supporting material is permitted during examination. (Mentioned in form No. 205)

1. NIL
2. NIL

UNIT-I

Q. 1 (a) Define the working of moving coil with diagram. Give the application of instruments used for measuring of currents
(b) Discuss the available errors in wattmeter and their adjustments.

OR

Q. 1 (a) Explain the testing and calibration of single phase cuergy meter by phantom loading.
(b) Briefly explain torque equation of electrodynamic instruments.

UNIT-II

Q. 2 (a) Define Blondel's theorem for n phase, p wire system.
(b) Explain the construction and working of 3 phase induction type energy meter. [8]

OR

 11.1 .11 vilition of power factor on errors.

UNIT-III

$1,11 \therefore$, the construction, operation and standardization of DC potentiometers. 1 willate slide wire and cromption potentiometers.

OR

"1 How can we use potentiometers for resistance, voltmeter and ammeter calibrations. I sul down the applications of AC potentiometers.

UNIT-IV

1) (1a) Discuss the measurement of medium resistance using wheat stone bridge method. Give suitable diagrams and related mathematical expressions.
(b) Classify the resistance on the basis of range.

OR

1.) (a) Write a short note on measurement of earth resistance.
(b) Discuss Kelvin's double bridge method of resistance measurement

UNIT-V

Q.5 Write short note on the following with reference to AC bridges
(a) sources and detectors
(b) Wagner earth device

$\mathrm{O}_{\mathrm{ni}}^{\pi}$

Q. 5 (a) Explain the working, block diagram and utility of De Sauty bridge for capacitance measurement.
(b) What are the sources of error in bridge measurement? List down the precautions.

