Roll No. : \qquad

3E1486

B. Tech. (Sem. III) (Main/Back) Examination, January - 2012

 Electrical Engg. (Common with Electrical \& Electronics) 3EE6 Mathematics (Common with 3EE6.1 \& 3EX1)Time : 3 Hours]

Instructions to Candidates :
Attempt any five questions selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.

Use of following supporting material is permitted during examination. (Mentioned in form No. 205)

1. \qquad 2. \qquad
UNIT - I
1 (a) Find the Laplace transform of the following functions :
(i) $3+2 t-4 t^{3}+\cos 4 t-3 e^{-2 t}$
(ii) $\frac{1}{t}(1-\cos t)$.
(b) Find the inverse Laplace transform of the following functions :
(i) $\frac{1}{s^{2}}-\frac{2}{s+3}-\frac{1}{s^{2}+4}$
(ii) $\frac{s}{s^{4}+4 a^{4}}$

$$
8+8=16
$$

OR

1 (a) Using Laplace transform technique to solve the following differential equation :
$\left(D^{2}+9\right) y=\cos 2 t, D \equiv \frac{d}{d t}$
with $y(0)=1, y\left(\frac{\pi}{2}\right)=-1$
(b) Solve the following partial differential equation by using Laplace transform technique

$$
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, u=u(x, t)
$$

with $u(0, t)=0=u(5, t)$ and $u(x, 0)=10 \sin 4 \pi x$.

$$
8+8
$$

UNIT - II

2 (a) Find the inverse Fourier sin transform of $\left\{\frac{e^{-a s}}{s}\right\}$ and hence deduce $F_{s}^{-1}\left\{\frac{1}{s}\right\}$.
(b) Solve the integral equation :
$\int_{0}^{\infty} f(x) \cos s x d x= \begin{cases}1-s, & \text { when } 0 \leq s \leq 1 \\ 0, & \text { when } s>1\end{cases}$

OR

2 (a) Find the discrete Fourier transform of the sequence $\{1,2,3,4\}$.
(b) Solve the following partial differential equation by using Fourier transform technique :

$$
\frac{\partial V}{\partial t}=\frac{\partial^{2} V}{\partial x^{2}}
$$

if
(i) $\quad V_{x}(0, t)=0$
(ii) $V(x, 0)=\left\{\begin{array}{ll}x, & 0 \leq x \leq 1 \\ 0, & x>1\end{array}\right.$ and
(iii) $V(x, t)$ is bounded $x>0, t>0$

UNIT - III

3 (a) Find the Fourier series of the function

$$
f(x)=x+x^{2}
$$

in the interval $(-\pi, \pi)$ and show that
$\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$.
(b) Obtain the cosine series of $\sin x$ in the interval $0<x<\pi$

OR

3 (a) Find the external for the functional

$$
\int_{1}^{2} \frac{\sqrt{1+y^{\prime 2}}}{x} d x \quad y(1)=0, y(2)=1
$$

(b) Find a function $y(x)$ for which $\int_{0}^{1}\left(x^{2}-y^{\prime 2}\right) d x$ is stationary, given that $\int_{0}^{1} y^{2} d x=2, y(0)=0, y(1)=0$

UNIT - IV

4 (a) State and prove Cauchy-Riemann equations.
(b) Find the bilinear transformation which maps the points $z=1, i,-1$ respectively into the points $w=i, 0,-i$. For this transformation, find the image of $|z| \leq 1$.
$5+3=8$
OR

* 4 (a) Evaluate the integral

$$
\int_{0}^{1+i} z^{2} d z
$$

(b) Evaluate : $\int_{C} \frac{(1-2 z)}{\dot{z}(z-1)(z-2)} d z$ where C is the circle $|z|=2.5$.

8

UNIT - V

5 (a) Expand $\frac{z^{2}-4}{(z+1)(z+4)}$ in Laurent's series for the regions
(i) $|z|<1$
(ii) $1<|z|<4$
(iii) $|z|>4$
(b) Find the poles of the following functions, find also the order of each poles :
(i) $\frac{1}{1+z^{4}}$ (ii) $\frac{1}{\sin z-\cos z}$.

$$
4+4=8
$$

OR
5 (a) Find the residue of $\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$ at all its poles in the finite plane.
(b) Prove that:

$$
\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x=\frac{5 \pi}{12}
$$

