Present state	Next state			
	a=o		a=1	
	state	o/p	state	o/p
q ₁	q ₁	1	q ₂	0
q ₂	q ₄	1	q ₄	1
se q ₃ and	q2	ng 11 ach in	q ₃	1
q ₄	q ₃	0	q ₁	1

(a) Construct a minimum state automata equivalent to the DFA described by the figure given below : 8

 (b) Construct a DFA equivalent to the NDFA M where transition diagram is given below: 8

Unit - II

- .2. (a) What is Myhill-Nerode theorem. Explain. Also prove that L is regular language, if L consisting of all strings over {a,b}. 8
 - (b) Consider DFA m= $(\{q_0,q_1,q_2\},\{a,b),s,q_0,\{q_1,q_2\})$ such that $s(q_0,a) = q_2, s(q_1,b) = q_1, s(q_2,a) = q_2, s(q_2,b) = q_2$, find out regular expression for the language accepted by M. Also express the language.

6E3203

1

[Contd...