							U	nit -	V						
9.	a)	Find the rank correlation for the following data.													(8)
		X:	85	74	85	50	65	78	74	60	74	90			
		<i>Y</i> :	78	91	78	58	60	72	80	55	68	70			
	b)	Fit a	Fit a second degree Parabola from the following data.												(8)
		x:	0		1	2		3		à					
		<i>y</i> :	1	1	.8	3.3	3.3 4.		6.3						
		OR													
															0

10. a) If θ is the acute angle between the two regression lines in the case of two variables x & y, then show that

$$\tan\theta = \frac{1-r^2}{r} \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$$

r, $\sigma_x \& \sigma_y$ having their usual meaning.

b) In a partially destroyed laboratory record of an analysis of a correlation data, the following result only are eligible.

Var of x = 9

regression equations are

$$a = 8x - 10y + 66 = 0$$

40x - 18y = 214

Find

- i) The mean values of x and y
- ii) The coefficient of correlation between x and y.
- iii) The standard deviation of y.

(8)

(8)