4 (a) If
$$f(t) = \frac{t}{a}$$
 for $t < a$
= 1 for $t > a$

show that:

$$Lf(t) = \frac{1 - e^{-as}}{as^2}$$

(b) Find the inverse Laplace transform of $\frac{s+2}{s^2-4s+13}$

OR

- 4 (a) Solve the equation by Laplace transform of (D-1)(D-2)(D-3)x=5, when x=0 x'=0 $x''_2=0$.
 - (b) Solve the following equation by Laplace transform: $\frac{dx}{dt} 2x = 3e^t \text{ given } x(0) = 1.$

5 (a) Find the missing term of the following distribution:

x	0	1	2	3	4
y	$y_0 = 1$	$y_1 = 8$?	$y_3 = 64$	$y_4 = 125$

(b) Apply Picards method of find the solution of $\frac{dy}{dx} = y - x$ with $x_0 = 0$, $y_0 = 2$ upto the third order approximation.

OR

5 (a) Apply Miline's predictor-corrector method to solve the following differential equation :

$$\frac{dy}{dx} = x - y^2$$
, given that $y(0) = 0$ $y(.2) = .02$
 $y(.4) = .0795$ $y(.6) = .1762$

(b) Use Runge-Kutta forth order method to solve $\frac{dy}{dx} = -2xy^2$, y(0)=1 with h=0.2 for x=0.2.