Maximum Marks: 80
Min. Passing Marks Main: 26
Min. Passing Marks Back: 24
Instructions tu Cundidates:
Attempt (nny five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any dutta you feel missing suitably be assumed and stated clearly.
Units of quantities used/calculated must be stated clearly.
Use of following supporting material is permitted during examination.
2. NIL

UNIT-I

Q. 1 (a) Define kinematic indeterminacy. Determine kinematic degree of indeterminacy for the following structures shown in Fig 1
(i)

(ii)

(iii)

いい 'mi wing s cinema A1\%o

Fig - 1
(b) Solve the continuous team using slope - deflection method (Fig 2) and draw B M. D.

Fig. 2
OR

Analyses the rigid
BMD \& deflected sF
Q. 1 (a) Write Maxwell - Betti's generalized theorem. A vertical downward load of 46 KN acting at F in the portal frame shown in Fig 3 produces a horizonta deflection at E of 2 mm towards left and a clockwise rotation of 0.1 radian at D Determine the vertical deflection at F due to a horizontal load of 20 KN at E towards right and an anti clockwise moment of $1.6 \mathrm{KN}-\mathrm{m}$ acting at D .

Fig. 3
(b) Solve using slope deflection method (Fig 4) and draw the bending moment Sugram. Also draw he detlected shope for the ton PORS.

UNIT-II

Q. 2 Analyses the rigid frame shown in Fig 5 using moment distribution method. Draw BMD \& deflected shape.

OR

Q. 2 A Beam $\mathrm{ABCD}, 16 \mathrm{~m}$ long is continuous over three spans and is loaded as shown in Fig 6. The support B sinks by 5 mm downwards. I for the beam is $93 \times 10^{4} \mathrm{~mm}^{4}$ throughout. Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Calculate the moments and draw the BMD. Also draw deflected shape.

UNIT-III

Q. 3 (a) Define strain energy. Calculate the strain energy due to bending for the beam given in Fig 7 having span of 5 m .

(b) Calculate the vertical deflection of point B in pin fainted truss shown in Fig 8 under the given toading.

Fig. 8

OR

Q. 3 (a) Write Castiglione's theorems.
(b) Determine the axial faces in the members of pin jointed frame shown in Fig 9. The cron sectional area of bars $A B \& A C$ is ' $2 a$ ' and that of other members is ' a '

Fig. 9

UNIT-IV

Q. 4 A portal frame $A B C D$ is fixed at A and D, has rigid joints at B and C. It is loaded as shown in Fig 10. Solve the frame using column analogy nethod and plot the B. M. D.

Fig 10

OR

Q. 4 Solve the frame using Kani's method (Fig 11). Sketch the B. M. D. for the frame. [16]

Fig 11

UNIT-V

Q. 5 Solve the building frame shown in Fig 12 using portal method.

Fig 12

OR

Q. 5 Fig 13 shows plan of a Tripod. Tre feet A, B and C being in the same plane and the open D being 3.75 m above the plane. Horizontal loads of 100 KN and 150 KN are applied at D in the directions shown. Find the forces in the members assuming that all joints are pin - joints [16]

Fig 13

Time: 3 Hours
Maximum Marks: 80
Min. Passing Marks Main: 26
Min. Passing Marks Back: 24

Instructions to Candidates:

Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed und stated clearly.
Units of quantities used/calculated must be stated clearly.
Use of following supporting material is permitted during examination.

1. NIL
2. NIL

UNIT-I

Q. 1 (a) What do you mean by the term "per-capita demand"? How is it estimated? What are the factors which affect per capita demand?
(b) What is population forecasting? Discuss various methods used for this purpose with their merits and demerits.

OR

Q. 1 (a) Explain different types of water demands. How are they estimated?
(b) What do you understand by design period? Describe the factors which govern design period? What are the volues of design period as per the manual on water supply for the following components: -
(i) Pump hones.
(ii) Water Treatment Plant.
(iii) Reservoirs.
(iv) Distribution System.

UNIT-II

Q. 2 (a) What are the common sources of water for a water supply scheme? Explain the method of finding the yield of ground water.
(b) What are the permissible limits of the following for public drinking water as per the Indian Standards: -
(i) Turbidity
(ii) Colour
(iii) Hardness
(iv) pH
(v) Chloride
(vi) Nitrate
(vii) Total dissolved Solids
(viii) Alkalinity

OR

 water storage?
(b) Explain the following terms: -
(i) B. coli.
(ii) M. P. N.
(iii) Water borne diseases.
(iv) Physical characteristics of water.

UNIT-III

Q. 3 (a) Water has to be supplied to a town with one lakh population at the rate of 150 litres per capita per day from a source, 1.8 km away. Determine the size of the supply main assuming suitable data where necessary. Also find head loss using Hazen- William's formula.
(b) Explain the sedimentation process with a neat sketch of a plain sedimentation tank.

OR

Q. 3 (a) Estimate the hydraulic gradient in a 2 m dia smooth concrete pipe carrying a discharge of 3 cumecs at $10^{\circ} \mathrm{C}$ temperature, by using Davey- Weisbach formula. Assume dimensionless friction factor $\mathrm{f}^{\prime}=0.011$
(b) What do you mean by sedimentation aided with coagulation? Explain the laboratory method to find out the optimum quantity of coagulant.

UNIT-IV

Q. 4 (a) What are the differences between slow sani filters and rapid gravity filters? Explain in detail.
(b) Explain the following terms:-
(i) Pre- chlorination.
(ii) Break-point chlorination.
(iii) Super- chlorination.
(iv) Double chlorination.

OR

Q. 4 (a) What are the differences between line-soda process and coolite process? Explain in detail.
(b) What is meant by disinfection of water? What is its importance? Explain the different methods used for this purpose.

UNIT-V

Q. 5 Write short notes on the following (any four):-
(a) Hardy-Cross Method.
(b) Components of House water connection.
(c) Fire hydrants.
(d) Distribution reservoirs.
(e) Stand Pipes.

OR

Q. 5 What do you mean by layout of distribution system? Illustrate with sketches the different types of layouts of pipe system in distributing water. Compare them with their merits and demerits.

Time: 3 Hours

Instructions to Candidates:
Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly.
Units of quantities used/calculated must be stated clearly.
Use of following supporting material is permitted during examination. 1. NLL
2. NIL

UNIT-I

Q. 1 (a) A 10 cm dia, 30 cm long sample was extracted from ground weighs 4125 gm . A moist specimen of the sample weighing 12.7 gm was oven dried and its weight was found 9.2 gm . If specific gravity of soil in 2.65 find -
(i) Water content
(ii) Bulk Density
(iii) Dy Dazuity
(iv) Void ratio
(v) Degree of saturation
(b) What do you understand by following classification of soils
(i) CL
(ii) SW
(iii) MH

OR

Q. 1 (a) Explain the IS Classification of soils.
(b) The bulks unit weight of soil is $19.10 \mathrm{kN} / \mathrm{m}^{2}$ and water content is 12.5%, specific gravity of soil is 2.67 , Determine -
(i) Void ratio
(ii) Porosity
(iii) Degrees of saturation

UNIT-II

Q. 2 (a) Explain the structure of cohesive soils.
(b) Explain the structure of montmorillonite mineral. What makes it different from other minerals?

OR

Q. 2 (a) What do you understand by permeability of soil. Explain Darcy's law to compute rate of flow through soil.
(b) A soil sample has length of 3.5 m and cross-sectional area of $2 \mathrm{~m}^{2}$. If water flows through such soil sample and fluid energy lost is 1650 Nm for every cubic meter flow of water, estimate Darcy's velocity and permeability. The time of flow for $1 \mathrm{~m}^{3}$ of water is 26 hours.

UNIT-III

Q. 3 (a) Explain total and effective stress taking example of dry and saturated soils. Show the variation of total stress, effective stress and pore water pressure for soil deposit having water table at ground surface.
(b) In the process of an excavation for a wall footing, the water table was lowered from depth of 1.5 m to a depth of 4.5 m in claying sand deposit. Considering the soil above water table remains saturated at water content 30%, compute the following -
(i) The effective stress at 4 m after lowerly water table, take $\mathrm{G}=2.68$.
(ii) increase in effective stress at depth 5 m .

OR

Q. 3 (a) What do you understand by "Piping'? Why it occurs in dams and how it can be prevented?
(b) Show a flow net through an earthen dam and explain the applications of flow net.

UNIT-IV

Q. 4 (a) What differest drainage conditions are considered in shear strength test of soil. Explain their relevance for actual site conditions.
(b) A specimen of dry sand when subjected to triaxial test, failed at deviator stress $400 \mathrm{kN} / \mathrm{m}^{2}$. It failed with a pronounced failure plane with an angle 24° to the axis of the sample. Compute the lateral pressure which has caused the failure.

OR

Q. 4 (a) Explain Mohr-Coulomb shear strength theory.
(b) In a triaxial test on dry sand the sample failed wren major and minor principal stresses were $980 \mathrm{kN} / \mathrm{m}^{2}$ and $280 \mathrm{kN} / \mathrm{m}^{2}$ respectively. What would be shear strength of same sample when tested in direct shear test under a normal stress of $300 \mathrm{kN} / \mathrm{m}^{2}$.

UNIT-V

Q. 5 (a) Enumerate the factors affecting compaction and explain how they affect the compaction.
(b) If a proctor mould which has diameter 125 mm and height 130.4 mm is used for compaction, what would be the number blows to each layer if rammer is used is

OR

Q. 5 (a) What is a Proctor Needle? How it is used in compaction control in the field?
(b) What do you understand by mechanical stabilization? For what type of soil it will be suitable?
H

Time: 3 Hours

Maximum Marks: 80
Min. Passing Marks Main: 26
Min. Passing Marks Back: 24

Instructions to Candidates:
Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly.
Units of quantities used/calculated must be stated clearly.
Use of following supporting material is permitted during examination.

UNIT-I

Q. 1 (a) Derive an expression to find out the level difference by trigonometrical leveling between two station ' A ' and ' B ' by single observation of angle of depression from 'A' to ' B '. Apply following for correction in your expression-
(i) Correction for curvature
(ii) Correction for refraction
(iii) Correction for axis signal.
(b) Two observation were made on the top P of a flag PQ on a hill from two stations A and $B, 100 \mathrm{~m}$ apart, the stations A and B being in the same line with P. The angle of elevations of P at A and B were $31^{\circ} 05^{\prime}$ and $16^{\circ} 42^{\prime}$ respectively. The staff reading on the B.M. $($ R.L. $=242.23 \mathrm{~m})$, were respectively 2.530 and 3.615 m when the instrument was at A and B, the telescope being horizontal. Determine the R.L. of the foot of the signal if PQ is 4.5 m .

OR

Q. 1 The following reciprocal observations were made from two points P and Q :

Horizontal distance $=16440 \mathrm{~m}$
Angle of depression of Q at $\mathrm{P}=0^{\circ} 3^{\prime} 45^{\prime \prime}$
Angle of depression of P at $\mathrm{Q}=0^{\circ} 2^{\prime} 6^{\prime \prime}$
Height of signal at $P=4.07 \mathrm{~m}$
Height of signal at $\mathrm{Q}=3.87 \mathrm{~m}$
Height of instrument at $P=1.27 \mathrm{~m}$
Height of instrument at $Q=1.48 \mathrm{~m}$
Determine (a) R.L. of Q , if the of P is 326.39 m and (b) the average coefficient of refraction at the time of observation.

Take R Sin $1^{\prime \prime}=30.88 \mathrm{~m}$

UNIT-II

Q. 2 (a) Explain the function of following curves:
(i) Simple circular curve
(ii) Compound curve
(iii) Reverse curve
(iv) Transition curve.
(b) Describe the method of setting out a simple circular curve by deflection angles using a tape and a theodolite.

OR

Q.2 (a) What is a transition curve? Derive an equation for an ideal transilion curve. [8]
(b) A reverse curve AB is to be set out between two parallel railways lines, 30 m apart. If the two arcs of the curve are to have same radius and the distance between the tangent points A and B is 180 m . calculate the radius. The curve is to be set out from AB at 10 m intervals along it. Compute the length of the off sets.

UNIT-III

Q. 3 (a) What is triangulation? How is it different from traversing and trilateration?
(b) Two triangulation stations A and B are 40 km apart and have elevations of 178 m and 175 m , respectively. Find the minimum height of signal required at \mathbf{B} so that line of sight may not pass nearer the ground than 3 m . The intervening ground may be assumed to have a uniform elevation of 150 m .

OR

Q. 3 (a) What is meant by extension of a base line? Explain with neat sketch how a base line is extended in the field.
(b) From a satellite station $\mathrm{S}, 15 \mathrm{~m}$ from a triangulation station A , the angles measured to three stations B, C and A are as follows:
$\angle \mathrm{CSA}=35^{\circ} 12^{\prime} 55^{\prime \prime} ; \angle \mathrm{BSC}=60^{\circ} 38^{\prime} 40^{\prime \prime}$

The length of sides $A C$ and $A B$ are 5815 m and 1673 m respectively. Calculate the angle BAC.

UNIT-IV

Q. 4 (a) Discuss types of errors in surveying. State laws of accidental errors.
(b) Find the most probable values of the angles A, B and $A+B$ from the following observations.

$A=42^{\circ} 20^{\prime} 30.4^{\prime \prime}$	Weight $=3$
$B=36^{\circ} 18^{\prime} 25.2^{\prime \prime}$	Weight $=2$
$A+B=78^{\circ} 38^{\prime} 50.3^{\prime \prime}$	Weight $=4$

OR

Q. 4 The following eight angles of a braced quadrilaterals ABCD were observed and adjusted for the closing errors at four stations A, B, C and D. Adjust the angles by upproximate mehods.
[16]
$\theta_{1}=44^{\circ} 31^{\prime} 35^{\prime \prime}$

$$
A_{2}=43^{\circ} 38^{\prime} 07^{\prime \prime}
$$

$\theta_{3}=37^{\circ} 46^{\prime} 36^{\prime \prime}$

$$
\theta_{4}=54^{\circ} 05^{\prime} 09^{\prime \prime}
$$

$\theta_{5}=47^{\circ} 04^{\prime} 31^{\prime \prime}$
$\theta_{5}=41^{\circ} 05^{\prime} 15^{\prime \prime}$
$\theta_{7}=50^{\circ} 29^{\prime} 37^{\prime \prime}$
$\theta_{8}=41^{\circ} 21^{\prime} 28^{\prime \prime}$

UNIT-V

Q. 5 (a) What is a spherical triangle? Discuss its properties.
(b) What are different methods of determination of azimuth of a star? Discuss exmeridian observation system.

OR

Q. 5 (a) Make a neat sketch and explain following -
(i) Observer's meridian.
(ii) Ecliptic
(iii) Declination circle
(iv) Solstices
(b) Discuss brielly the preparations required for measurements with total stations. [8]

$\left[\begin{array}{l}12 \\ 0 \\ 0 \\ 10 \\ 19 \\ \hline\end{array}\right.$
 Roll No.
 \qquad
 Total No of Pages: 4
 B. Tech V Sem. (Main/Back) Exam. Nov-Dec. 2015
 Civil Engineering 5CE5A Building Design
 5E5065

Time: 3 Hours

Instructions to Candidates:

Maximum Marks: 80 Min. Passing Marks Main: 26
Min. Passing Marks Back: 24

Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly.
Units of quantities use i/calculated must be stated clearly.
Use of following supporting material is permitted during examination.

2. IS 875-Part-III

UNIT-I

Q. 1 (a) Explain briefly dead and live load for the design of school building. [6]
(b) Define shear walls. Discuss the utility of these walls in a building.
(c) Define strength and stiffness of buildings. Differentiate between soft storey and weak storey.

OR

Q. 1 (a) Describe symmetry and un-symmetry building forms with the help of suitable fiowiz.
(b) Discuss briefly about torsional effects in unsymmetrical buildings.
(c) Explain salient features of Tubular Structural System.

UNIT-II

Q. 2 An industrial rectangular clad building with pitched roof is situated in industrial area on a fairly lavelled topography at Jaisalmer. Calculate wind load on wall and roof if
roof angle is 10° and opening in wall may be assumed as 10%. The building is 12 m wide and 22 m long with over hangs on either side as 0.50 m .

OR

Q. 2 (a) Differentiate between external pressure coefficient and internal pressure coefficient with proper figure.
(b) A rectangular building with flat roof supported on masonry walls is situated at Jaipur. The building is having plan dimensions of $14 \mathrm{~m} \times 56 \mathrm{~m}$ and height 6 m . Calculate wind pressure on wall and roof if the topography of the area is fairly leveled and terrain is with numerous closely spaced obstructions having the size of structure less than 10 m in height. Assume 25 openings of $1.2 \mathrm{~m} \times 1.3 \mathrm{~m}$ size in the building.

UNIT-III

Q. 3 Calculate total base shear for a four story R.C. framed building to be constructed at Ahemdabad. The proposed building has three bays in X direction and two bays in Y direction as shown in Fig. 1 All the beams are of $250 \mathrm{~mm} \times 450 \mathrm{~mm}$ and column of $450 \mathrm{~mm} \times 600 \mathrm{~mm}$ with floor thickness of 120 mm . Configuration of building is special moment resisting frame type and 13 resting on rock ground. Assume live load of $4 \mathrm{kN} / \mathrm{m}^{2}$ floor finish of $\mathrm{kN} / \mathrm{m}^{2}$ and Damping coefficient as 5%.

Fig. 1
[9680]

OR

Q. 3 (a) A building is built on a plot of $16 \mathrm{~m} \times 28 \mathrm{~m}$. Determine the centre of mass, centre of rigidity and design torsional eccentricity in X and Y direction for the building shown in Fig.2. The building is single storeyed and covered with rigid diaphragm roof. Desired data for the building as follows:
(i) Height of building $=3.5 \mathrm{~m}$
(ii) Thickness of floor and roof slab $=120 \mathrm{~mm}$
(iii) Thickness of wall $=150 \mathrm{~mm}$
(iv) Self weight of roof $/ \mathrm{slab}=3 \mathrm{kN} / \mathrm{m}^{2}$
(v) Self weight of wall $=5 \mathrm{kN} / \mathrm{m}^{2}$
(vi) Relative lateral rigidity of North wall $=0.46$
(vii) Relative lateral rigidity of South wall $=0.55$
(viii) Relative lateral rigidity of East and West walls $=0.50$

Fig. 2
(b) Define torsional moment and torsional force generated in un-symmetrical buildings. Write down expressions for torsional moment and torsional forces. [4]

UNIT-IV

Q. 4 (a) Discuss the importance of ductile detailing of RC structure. Show the ductile detailing of a typical joint of beam and column of a RCC framed building. [8]
(b) Explain short column effect in R.C. building.
(c) Write down briefly about floating columns.

OR

Q. 4 (a) Discuss briefly construction practices to be adopted to make a masonry building. earthquake resistant.
(b) Define effective length of masonry wall. Explain the procedure to design a masonry building.
(c) Discuss various methods to retrofit a masonry building.

UNIT-V

Q. 5 (a) Define Grid flooring with proper figures. Discuss advantage of these floors. [6]
(b) Explain the utility of precast elements for mass housing construction.
(c) Discuss advantages and disadvantages of folded plates.

OR

Q. 5 (a) Write down different types of cylindrical shell. Discuss various components of spherical dome with proper figure.
(b) Differentiate between folded plate and cylindrical shell. Discuss advantage of cylindrical shells.
\qquad

Maximum Marks: 80
Min. Passing Marks Main: 26
Min. Passing Marks Back: 24

Instructions to Candidates:
Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly.
Units of quantities used/calculated must be stated clearly.
Use of following supporting material is permitted during examination.
2. NIL

UNIT-I

Q. 1 (a) Describe the environmental concerns of solid waste disposal sites.
(b) Describe the factors that affect generation of solid waste. How the per capita generation of waste differs from place to place?

OR

Q. 1 (a) Describe the various types of classifications of solid waste.
(b) What are the physical and chemical characteristics of solid waste and how do they affect the management of solid waste?

Maximum Marks: 80
Min. Passing Marks Main: 26
Min. Passing Marks Back: 24
Instructions to Candidates:
Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly.
Units of quantities used/calculated must be stated clearly.
Use of following supporting material is permitted during examination.
2. NIL

UNIT-I

Q. 1 (a) Describe the environmental concerns of solid waste disposal sites.
(b) Describe the factors that affect generation of solid waste. How the per capita generation of waste differs from place to place?

OR

Q. 1 (a) Describe the various types of classifications of solid waste.
(b) What are the physical and chemical characteristics of solid waste and how do they affect the management of solid waste?

UNIT-II

Q. 2 (a) Describe the methods of solid waste management for aesthetical handling for the protection of public health.
(b) Describe various types of dust bins and community containers.

OR

Q. 2 (a) Describe the process of onsite handing of solid waste.
(b) What are the onsite processing methods and what is the significance of onsite processing?

UNIT-III

Q. 3 (a) What are the key steps in collection and transfer system design?
(b) What are the factors to be considered in selecting solid waste collection equipment?

OR

Q. 3 (a) How do we design a transfer station and determine its capacity?
(b) Compare the various collection and transfer alternatives for solid waste management.

UNIT-IV

Q. 4 (a) Describe the design and operation of a sanitary land fill witi a neat shatin. [8]
(b) Describe various techniques of waste processing and methods of disposal.

OR

Q. 4 (a) Describe incineration. What are the merits of incineration?
(b) Describe the various types of bio remediation and their advantages.

UNIT-V

Q. 5 (a) Describe the calorific value and moisture content of same constituents of solid waste and their effect on energy recovery.
(b) Describe the ways of reuse of waste in industry and its limitation.

OR
Q. 5 (a) What are the special techniques of treatment for industrial solid waste?
(b) Describe suitable disposal methods for industrial solid waste and differentiate them with municipal solid waste disposal.
\qquad
Total No of Pages: 4

B. Tech V Sem. (OId Back) Exam. Nov-Dec. 2015
 Civil Engineering 5CE2 (O) Concrete Structures-I

Time: $\mathbf{3}$ Hours

Maximum Marks: 80
Min. Passing Marks Back: 24

Instructions to Candidates:

Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly.
Units of quantities used/calculated must be stated clearly.
Use of following supporting material is permitted during examination.

UNIT-I

Q. 1 (a) A cantilever beam of 2.5 m span is subject to super imposed live load of $15 \mathrm{kH} / \mathrm{m}$ (excluding self weight). The beam section is restricted to 250 mm with and 450 mm overall depth. Using M-20 concrete and Fe-415 steel, determine and provide tension reinforcement at an effective cover of 50 mm . Give the neat sectional diagram of beam at support, showing all details.
(b) Determine the ultimate moment resisting capacity of the doubly reinforced beam show in Fig.1, if grade of concrete is M-20, grade of sieel is $\mathrm{Fe}-415$ stress level in compression steel $=347 \mathrm{~N} / \mathrm{mm}^{2}$.
effective cover to both tension and compression reinforment $=45 \mathrm{~mm}$

OR

UNIT-II

Q. 2 A hall of size $3 \mathrm{~m} \times 8 \mathrm{~m}$ is planned to be covered by a R.C.C. slab such that short effective span becomes 3.2 m . The slab is subjected to total ultimate u.d.l. (inclusive of self weight of slab $=20 \mathrm{kN} / \mathrm{m}^{2}$. Using M-20 and Fe-415, determine and provide main and distribution reinforcement in slab. Take effective depth of slab $=130 \mathrm{~mm}$, effective cover to main reinforcement $=20 \mathrm{~mm}$. Also apply the check for deflection as per codal provisions. Give the neat sectional elevation aleng the shorter span showing all details.

OR

Q. 2 (a) Discuss the putpose adod parisions of providing dismbution remfonentai in one-way slab as per I.S.-456.
(b) A simply supported R.C.C. beam is having width $=250 \mathrm{~mm}$, effective depth $=$ 500 mm , grade of concrete $\mathrm{M} \cdot 20$, grade of steel $\mathrm{Fe} \cdot 250$. The beam is subjected to a load of 180 kN at support and is provided with 5 bars of $18 \mathrm{~mm} \Phi(\mathrm{Fe}-250)$ at mid span and at support 2 bars out of 5 bars are bent up at 45°. Design and
$s i$
provide shear reinforcement at support using 2 legged vertical stirrups of $6 \mathrm{~mm} \Phi$ (Fe-259).

UNIT-III

Q. 3 (a) Determine the design ultimate moments at mid span and at edge for short span and long span for the slab shown in fig.-3. The slab is subjected to total ultimate design load of $15 \mathrm{kN} / \mathrm{m}^{2}$ and corners of the slab are held down. Use M-20 and Fe415.
[10]

Fig. - 3
(b) With the help of neat sketch discuss the provisions and purpose of torsion reinforcement in two-way slab.

OR

Q. 3 Design the interior panel of a flat slab of $6 \mathrm{~m} \times 6 \mathrm{~m}$ in size, with following data- grade of conerete-M-20, Crede of sted Fe-415, Thickness of stab-150mm, Total hitimate load on slab including self weight $=15 \mathrm{kN} / \mathrm{m}^{2}$. Use direct design method as per IS:456.

UNIT-IV

Q. 4 (a) Describe the salient features of interaction diagram for a short column under compression and uniaxial bending.
(b) A square column of RCC is 0 R $400 \times 400 \mathrm{am}$ in size. It is provided with 8 bars of
 the load is placed centrally on it? Determine the ultimate load carrying capacity of this column. Use M-20 grade of concrete.

OR

Q. 4 A RCC column of 400 mm diameter is hinged at both the ends. Its unsupported length is 4.5 m . Design the column as helically reinforced column to carry an ultimate load of 900 kN . Use M-30 concrete and Fe-415 steel. Give the neat longitudinal sectional diagram showing all details.

UNIT-V

Q. 5 (a) With the help of neat sketches, describe isolated, combined and raft footings. [6]
(b) Determine size of combined footing and draw the detailed plan to support the two columns A \& B carrying 1000 kN and 1500 kN respectively (as shown in fig.-4).

Fig. - 4

OR

Q. 5 Design an isolated footing to support a square column ($500 \mathrm{~mm} \times 500 \mathrm{~mm}$) carrying an axial load of 1500 kN . Column is reinforced with 4 bars of $20 \mathrm{~mm} \Phi(\mathrm{Fe}-415)$. Use M20 concrete and take safe bearing capacity of soil $=225 \mathrm{kN} / \mathrm{m}^{2}$.
\qquad

B. Tech V Sem. (Back) Exam. Nov-Dec. 2015 Civil Engineering 5CE3 (0) Steel Structures-I

Time: 3 Hours
Maximum Marks: 80
Min. Passing Marks Back: 24
Instructions to Candidates:
Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly.
Units of quantities used/calculated must be stated clearly.
Use of following supporting material is permitted during examination.

UNIT-I

Q. 1 A 120 mm diameter and 6 mm thick pipe is fillet welded to a 14 mm plate. It is subjected to a vertical factored load of 4.5 kN at 1.0 m from the welded end and a factored twisting moment of 1.8 kNm . Design the joint assuming shop welding and steel of grade Fe 410.

OR

Q. 1 (a) Briefly discuss merits and demerits of welded connections.
(b) Determine the size of the bolts required to connect the bracket (supporting a crane girder) to the column shown in fig.

UNIT-II

Q. 2 (a) Design a stanchion 3.5 m long, in a building, subjected to a factored load of 550 kN . Both the ends of the stanchion are effectively restrained in direction and position. Use steel of grade Fe 410 .
(b) An ISA $125 \times 75 \times 8 \mathrm{~mm}$ is used in a steel roof truss as discontinuous struts. Find its compressive strength if it is 2.1 mm long between centre of bolted connection. [6]

OR

Q. 2 Design a built-up column with four angles. The column is 12 m long and supports a factored axial compressive load of 700 kN . The ends of the column are held in position and restrained against rotation. Design a suitable connecting system. Use steel of grade Fe 410.

UNIT-III

Q. 3 A simply supported steel joist of 4.0 m effective span is laterally supported throughout. It carries a total uniformly distributed load of 40 kN (inclusive of self weight). Design an appropriate section using steel of grade Fe 410.

OR

Q. 3 Design a grillage foundation for a column ISHB $450 @ 87.2 \mathrm{~kg} / \mathrm{m}$. carrying a factored axial load of 2000 kN . The allowable bearing pressure on soil is $160 \mathrm{kN} / \mathrm{m}^{2}$. The base plate has size $800 \mathrm{~mm} \times 700 \mathrm{~mm}$ whose large dimension is placed parallel to the web of I section.

UNIT-IV

Q. 4 (a) Draw the view of a gusseted base connection with bolts, for a column and label the components.
(b) A Column ISHB 350@ $6612.2 \mathrm{~N} / \mathrm{m}$ carries an axial compressive factored load of 1700 kN . Design a suitable bolted gusset base. The base rests on M15 grade concrete pedestal. Use 24 mm diameter bolts of grade 4.6 for making the connections.

OR

Q. 4 (a) Briefly explain the modes of failures of tension member.
(b) A tie member in a bracing system consists of a singto anglo section of sire $100 \times 75 \times 10 \mathrm{~mm}$. Its longer leg is connected with a gusset plate 12 mm thick with 2 bolts of 16 mm diameter. Calculate the tensile capacity of member.

UNIT-V

Q. 5 (a) What are the various methods of plastic analysis? Explain them.
(b) Determine the value of w at collapse for the portal frame shown in fig. All the members have the same plastic moment of resistance.

OR

Q. 5 (a) Explain the principle of virtual work.
(b) Find out the collapse load for a continuous beam, shown in fig. The beam is of uniform cross section.

\section*{19

10

1
18
 Roll No.
 \qquad
 Total No of Pages: 3

 5E3155

 5E3155

 B. Tech V Sem. (Old Back) Exam. Nov-Dec. 2015

 B. Tech V Sem. (Old Back) Exam. Nov-Dec. 2015 Civil Enginecring Civil Enginecring 5CE5 (O) Quantity Surveying \& Valuation} 5CE5 (O) Quantity Surveying \& Valuation}

Time: 3 Hours

Maximum Marks: 80
 Min. Passing Marks Back: 24

Instructions to Candidates:
Attempt any five questions, selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly.
Units of quantities used/calculated must be stated clearly.
Use of following supporting material is permitted during examination.

1. NIL \qquad 2. NIL

UNIT-I

Q. 1 (a) Explain the purpose and importance of estimates.
(b) What are the different types of estimates? Explain in detail.

OR

Q. 1 (a) Describe various principles of estimating in details.
(b) What do you understand by measurement sheet, abstract sheet and bill of quaniiiics?

UNIT-II

Q. 2 (a) What is meant by rate analysis? Mention the factors affecting analysis of rates.[6]
(b) Perform the analysis of rate for lime concrete (1:2:6) in foundation with 40 mm size brick ballast with 1 line and 2 surkhi mortar.

OR

Q. 2 (a) What do you mean by current schedule of rates? Also explain the term, "out-turn of work".
(b) Work out the analysis of rate for 25 mm thick cement concrete flooring (1:2:4)

UNIT-III

Q. 3 The figure shows a room of internal dimensions $4.0 \mathrm{~m} \times 2.5 \mathrm{~m}$. Calculate the quantities of following items of work by centre line method:-
(i) Excavation in foundation
(ii) Lime concrete in foundation
(iii) Brickwork in cement mortar (1:4) in foundation and plinth
(iv) Brickwork in cement mortar (1:6) in superstructure
(v) 2.5 cm thick DPC

All dimensionsare in m.

OR

 by using Long wall - short wall method

UNIT-IV

Q. 4 (a) List out and explain the factors affecting cost of work.
(b) Explain the terms - Overhead charges, Contingency and Work-Charged establishment.

OR

Q. 4 (a) What are the different percentages generally adopted for a building based on the cost of -
(i) Various items of work, and
(ii) Materials and labour
(b) Explain the methods of taking out quantities of items of work.

UNIT-V

Q. 5 (a) What do you mean by depreciation? Describe various methods of finding out the amount of deprecation.
(b) Explain the following -
(i) Scrap Value
(ii) Salvage Value
(iii) Outgoings
(iv) Year's purchase

OR

Q. 5 (a) What do you understand by valuation? Describe the purpose and principles of valuation.
(b) Explain the following terms-
(i) Dook value
(ii) Mortgage lease
(iii) Sinking fund
(iv) Annuity

